RX62N Group

RX62N Multimedia Demonstration on RI600 & FreeRTOS™

Introduction
This application note showcases the use of the Adaptor Layer that allows the RX62N Demo Project to run both on RI-600 and FreeRTOS™.

Target Device
- RX62N Group MCU (product number: R5FF562N8BDBG)

Target Board
- RX62N Renesas Start Kit + (product number: R0K5562N0C000BE)

Middleware
- The following list are the middleware and reference documents used in this demonstration

<table>
<thead>
<tr>
<th>Middleware</th>
<th>Version</th>
<th>Product Number</th>
<th>Reference Documentation</th>
<th>Application Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>uITRON</td>
<td>1.00Re02</td>
<td>R0R5RX000TRW01w</td>
<td>- User Manual (rej10j2052_r600_4um.pdf)</td>
<td>R20AN0091ES0100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- RX Family Creating Workspace with RI600/4 (r20an0091es0100_rx600.pdf)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- RX Family Debugging with RI600/4 (r20an0092es0100_rx600.pdf)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- RX Family How to Compute RI600/4 User Stack and System Stack (r20an0093es0100_rx600.pdf)</td>
<td></td>
</tr>
<tr>
<td>FreeRTOS™</td>
<td>7.0</td>
<td>-</td>
<td>- www.freertos.org</td>
<td></td>
</tr>
<tr>
<td>GUI library</td>
<td>1.1</td>
<td>R0MRX60GL0011RRC</td>
<td>- GUI Library Introduction Guide (r20an0077eq0100_rx_gui.pdf)</td>
<td>R20AN0077EJ0100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- GUI Builder Introduction Guide (r20an0076eq0100_gui.pdf)</td>
<td>R20AN0076EJ0100</td>
</tr>
<tr>
<td>Filesystem</td>
<td></td>
<td>-</td>
<td>- FAT File System Software (rej06j0086_mcuap.pdf)</td>
<td>REJ06J0086-0100</td>
</tr>
<tr>
<td>TCPIP(T4)</td>
<td>1.03Re00E</td>
<td>R0MRX60PT0020RRC</td>
<td>- Introduction Guide (r20an0051ej0101_rx_t4.pdf)</td>
<td>R20AN0051EJ0101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- user’s manual (r20uw0031ej0102_t4tiny.pdf)</td>
<td></td>
</tr>
<tr>
<td>JPEG</td>
<td>2.01Re00E</td>
<td>R0MRX60JP0010RRC</td>
<td>- JPEG Decoder Introduction Guide (r20an0104eq0100_rx_jpeged.pdf)</td>
<td>R20AN0104EJ0100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- User’s Manual(*) (r20uw0075eq0101_jpeged.pdf)</td>
<td></td>
</tr>
<tr>
<td>FFT</td>
<td>1.00Re00E</td>
<td>R0MRX60LF0010RRC</td>
<td>- User’s Manual (r20uw0071ez0101_flt.pdf)</td>
<td>R20AN0085EJ0101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- FFT Library Introduction Guide (r20an0085eq0101_flt.pdf)</td>
<td></td>
</tr>
<tr>
<td>DES</td>
<td>-</td>
<td>-</td>
<td>- DES Library (r20an0035eq0100_rx_des.pdf)</td>
<td>R20AN0035EJ0100</td>
</tr>
<tr>
<td>WAV</td>
<td>-</td>
<td>Free</td>
<td>- Nil</td>
<td></td>
</tr>
<tr>
<td>ADPCM</td>
<td>-</td>
<td>-</td>
<td>- Sound Data Compression/Expansion Software (rej06j0085_mcuap.pdf)</td>
<td>REJ06J0085-0100</td>
</tr>
<tr>
<td>MP3</td>
<td>-</td>
<td>-</td>
<td>- MP3 Library – Available(**).</td>
<td></td>
</tr>
<tr>
<td>USB Host (MSC)</td>
<td>1.1</td>
<td>Free</td>
<td>- USB Host Mass Storage Class Driver (HMSC) (r01an0513ej_usb_hmsc.pdf)</td>
<td>R01AN0513EJ0110</td>
</tr>
</tbody>
</table>

Note: FreeRTOS™ is a trademark of Real Time Engineers Ltd
(*) Free Evaluation version does not have the file(s).
(**) Please check with the local Renesas Representative.
Contents

1. Introduction... 3
 1.1 Applicable Conditions .. 3

2. RX62N Demo Project .. 4
 2.1 Project Background ... 4
 2.2 RX62N: Block Diagram ... 4
 2.3 RX62N Demo Project: Connection Setup ... 5
 2.4 Contents of Demo Set .. 6
 2.5 Master: Hardware Setup Procedure ... 7
 2.6 Slave: Hardware Setup Procedure ... 9

3. RX62N Demo Project Application Concepts ... 10
 3.1 Application Development concept... 10
 3.2 Application Code Base ... 10
 3.3 RX62N Demo Project Resources ... 11
 3.3.1 Hardware Resources ... 11
 3.3.2 Directory Structure ... 11
 3.3.3 Master Application Resources ... 14
 3.3.4 Slave Application Resources ... 15
 3.3.5 Master: Power-on Reset Application Flow .. 16
 3.3.6 Slave: Power-on Reset Application Flow ... 17

4. RI-600: Master RSK ... 18
 4.1 Running Master RSK ... 18
 4.2 Compiler Settings ... 21
 4.3 Assembler Settings .. 21
 4.4 Linker Settings .. 22

5. RI-600: Slave RSK .. 23
 5.1 Running Master RSK ... 23
 5.2 Compiler Settings ... 26
 5.3 Assembler Settings .. 26
 5.4 Linker Settings .. 27

6. FreeRTOS™: Master RSK ... 28
 6.1 Running Master RSK ... 28
 6.2 Compiler Settings ... 31
 6.3 Assembler Settings .. 31
 6.4 Linker Settings .. 32

7. FreeRTOS™: Slave RSK ... 33
 7.1 Running Master RSK ... 33
 7.2 Compiler Settings ... 36
 7.3 Assembler Settings .. 36
 7.4 Linker Settings .. 37

Website and Support .. 38

Revision Record

General Precautions in the Handling of MPU/MCU Products
1. Introduction

1.1 Applicable Conditions

- MCU: RX62N Group
- Evaluation board: RX62N Renesas Starter Kit + (product number: R0K5562N0C000BE)
- Operating frequencies:
 - Input clock: 12 MHz
 - System clock (ICLK): 96 MHz
 - Peripheral module clock (PCLK): 48 MHz
 - External bus clock (BCLK) and SDRAM clock (SDCLK): 48 MHz
- Operating mode: Single-chip mode
- Integrated development environment: Renesas Electronics High-performance Embedded Workshop, Ver. 4.09.01.007
- C compiler: Renesas Electronics RX Family C/C++ Compiler, Ver. 1.00.00 and Ver. 1.02.00
- Compiler, Assembler and Linker options will vary according to Master or Slave, RI-600 or FreeRTOS™ configuration. Please refer to the relevant sections for details.
2. RX62N Demo Project

2.1 Project Background

The RX62N Demo Project showcases the use of the RX62N MCU for a variety of purposes.

2.2 RX62N: Block Diagram

The RX62N MCU has the following block diagram:
2.3 RX62N Demo Project: Connection Setup

The RX62N Demo Project showcases the use of two RX62N Renesas Starters Kit (RSK) that communicates with one another through IEE 802.3, Ethernet. One RSK, deemed the Master will have an LCD Panel attached to it while the other RSK, deemed the slave, will serve as a host to transfer files over from the slave to the master. This can be seen from the connection block diagram as such:

![System Construction Diagram]

The physical hardware connection looks as such:
2.4 Contents of Demo Set

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>No. of pcs.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Box for RX62N-RSK-2ND (Master)</td>
<td>1</td>
<td>"Master" sticker is attached at the top right of the white box with a blue line: 3, 5, 6 and 7 are stored. * An E1 emulator of RSK standard accessories is also stored.</td>
</tr>
<tr>
<td>2</td>
<td>Box for RX62N-RSK-2ND (Slave)</td>
<td>1</td>
<td>"Slave" sticker is attached on the top right of the white box with a blue line: 4, 7, 8, 9 and 10 are stored. * An E1 emulator of RSK standard accessories is also stored.</td>
</tr>
<tr>
<td>3</td>
<td>RX62N-RSK-2ND (Master)</td>
<td>1</td>
<td>Including connecters for two extension boards (Liquid-crystal touch panel and Sound extension board).</td>
</tr>
<tr>
<td>4</td>
<td>RX62N-RSK-2ND (Slave)</td>
<td>1</td>
<td>No remodeling</td>
</tr>
<tr>
<td>5</td>
<td>Sound extension board</td>
<td>1</td>
<td>Connected to JA1 and JA2 at the top of the Master. JA1 and JA2 signs can be found on the back of the Sound extension board.</td>
</tr>
<tr>
<td>6</td>
<td>Liquid-crystal touch panel</td>
<td>1</td>
<td>Connected to TFT at the bottom of the Master. Care should be taken as the pin numbers are different between TFT and the connecters for the Liquid-crystal touch panel. * Connect them as the pin1 (sign △) on TFT at the top of the Master is inserted.</td>
</tr>
<tr>
<td>7</td>
<td>12.0[V]RSK attached AC adapter</td>
<td>2</td>
<td>Connected to PWR of the Master/ Slave. * Setting change of a jumper on the Master/ Slave may cause heat generation.</td>
</tr>
<tr>
<td>8</td>
<td>USB memory</td>
<td>2</td>
<td>Connect to either Master or Slave. * USB should be formatted as FAT16.</td>
</tr>
<tr>
<td>9</td>
<td>LAN crossing cable</td>
<td>1</td>
<td>LAN connecters of the Master/ Slave are directly connected.</td>
</tr>
<tr>
<td>10</td>
<td>RX62N demo sign</td>
<td>1</td>
<td>A sign saying “RX62N connectivity demo”</td>
</tr>
<tr>
<td>11</td>
<td>External speaker</td>
<td></td>
<td>Connected to the OUT pins on Sound extension board (optional)</td>
</tr>
</tbody>
</table>
2.5 Master: Hardware Setup Procedure

Jumper settings:

- J22: Set to MITOC4A-A
- J23: Set to MITOC0C
- Install JA1 and JA2 connectors on the upper side of the board for the Sound Board
- Install TFT connector on the under side of the board for connection to the Touch Panel
- Remove resistor R46 and install it at R47.

The locations of these changes on the RX62N RSK Master Top View can be seen as follows:
The locations of these changes on the RX62N RSK Master Bottom View can be seen as follows:

RX62N RSK: BOTTOM

With these changes made, the RX62N RSK Master is ready for connection with the Touch Panel as well as the Sound Board.
2.6 Slave: Hardware Setup Procedure

No changes required from the default setting. The RX62N RSK Slave should look like the following:
3. RX62N Demo Project Application Concepts

3.1 Application Development concept
Application code development and APIs should conform to that of the RI-600 Specification. This means that applications should be written as though they are targeted for the RI-600 platform.

3.2 Application Code Base
Applications can be developed by using either of the provided workspaces. This allows for ease of application development and test on both the RI-600 and FreeRTOS™ platform. The workspace directories and files are linked as shown:
3.3 RX62N Demo Project Resources

3.3.1 Hardware Resources
The RX62N Demo Project Application has the following hardware setup:

- Input clock: 12 MHz
- System clock (ICLK): 96 MHz
- Peripheral module clock (PCLK): 48 MHz
- External bus clock (BCLK) and SDRAM clock (SDCLK): 48 MHz

3.3.2 Directory Structure
The following shows the basic folder directory whereby RX62N workspaces are placed in sub-folders of respective Renesas Compiler directory. RX62N folder without suffix _mp3 means it supports only wave and raw PCM playback. RX62N_mp3 folder has codes which supports MP3 playback but customers need to contact Local Renesas Representative to obtain the MP3 libraries.
The following shows that the source directories are the same.
The following shows that the workspace which does not MP3 libraries.

Customers are evaluating MP3. Please **place the libraries** highlighted in blue in the lib directory **under mp3_dec** as shown below.
3.3.3 Master Application Resources

The RX62N Demo Project Master Application has the following Tasks:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBC_IDLE_TSK</td>
<td>Renesas USB Idle Task</td>
</tr>
<tr>
<td>USBC_SMP_TSK</td>
<td>Renesas USB required Task</td>
</tr>
<tr>
<td>USB2_HCD_TSK</td>
<td>Renesas USB required Task</td>
</tr>
<tr>
<td>USB2_MGR_TSK</td>
<td>Renesas USB Manager Task</td>
</tr>
<tr>
<td>USB2_HUB_TSK</td>
<td>Renesas USB Hub Task</td>
</tr>
<tr>
<td>TCP_COM_TSK</td>
<td>TCP/IP Communication Task for Main Program</td>
</tr>
<tr>
<td>TCP_USB_TSK</td>
<td>TCP/IP Communication Task for USB</td>
</tr>
<tr>
<td>GUI_MAIN_TSK</td>
<td>Main GUI Task</td>
</tr>
<tr>
<td>TOUCH_MAIN_TSK</td>
<td>Main Touch Task</td>
</tr>
<tr>
<td>MAIN_TASK</td>
<td>Main Task that controls the synchronization of Tasks</td>
</tr>
<tr>
<td>USB_MONITOR</td>
<td>USB Monitoring Task</td>
</tr>
<tr>
<td>MP3_TSK</td>
<td>MP3 Task for Audio Playback of MP3, ADPCM and WAVE File formats</td>
</tr>
<tr>
<td>BENCH_DES_TSK1</td>
<td>DES Bench Task for DES Demonstration</td>
</tr>
<tr>
<td>BENCH_DES_TSK2</td>
<td>DES Bench Task for DES Demonstration</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Master Application has the following Semaphores:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB2_HCD_SEM</td>
<td>Renesas USB required Semaphore</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Master Application has the following Mailboxes:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB2_HCD_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_MGR_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HUB_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HSMP_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_CLS_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HMSC_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HMSCD_MBX2</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>GUI_TOUCH_MBX</td>
<td>Mailbox for Touch Screen processing</td>
</tr>
<tr>
<td>GUI_MAIN_MBX</td>
<td>Mailbox for Main GUI processing</td>
</tr>
<tr>
<td>MAIN_MBX</td>
<td>Mailbox for Main Task processing</td>
</tr>
<tr>
<td>TCP_COM_MBX</td>
<td>Mailbox for TCP Communication processing</td>
</tr>
<tr>
<td>MP3_MBX</td>
<td>Mailbox for MP3 Task</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Master Application has the following Memory Pools

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB2_HCD_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_MGR_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_HUB_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_HSMP_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_CLS_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_HMSC_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>TOUCH_MPL</td>
<td>Memory Pool for Touch Screen Data</td>
</tr>
</tbody>
</table>
3.3.4 Slave Application Resources

The RX62N Demo Project Slave Application has the following Tasks:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBC_IDLE_TSK</td>
<td>Renesas USB Idle Task</td>
</tr>
<tr>
<td>USBC_SMP_TSK</td>
<td>Renesas USB required Task</td>
</tr>
<tr>
<td>USBC_HCD_TSK</td>
<td>Renesas USB required Task</td>
</tr>
<tr>
<td>USBC_MGR_TSK</td>
<td>Renesas USB Manager Task</td>
</tr>
<tr>
<td>USBC_HUB_TSK</td>
<td>Renesas USB Hub Task</td>
</tr>
<tr>
<td>TCP_COM_TSK</td>
<td>TCP/IP Communication Task for Main Program</td>
</tr>
<tr>
<td>TCP_USB_TSK</td>
<td>TCP/IP Communication Task for USB</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Slave Application has the following Semaphores:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB2_HCD_SEM</td>
<td>Renesas USB required Semaphore</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Slave Application has the following Mailboxes:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB2_HCD_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_MGR_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HUB_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HSMP_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_CLS_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HMSC_MBX</td>
<td>Mailbox used by Renesas USB</td>
</tr>
<tr>
<td>USB2_HMSCD_MBX2</td>
<td>Mailbox used by Renesas USB</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Slave Application has the following Memory Pools:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB2_HCD_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_MGR_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_HUB_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_HSMP_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_CLS_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
<tr>
<td>USB2_HMSC_MPL</td>
<td>Memory Pool for Renesas USB</td>
</tr>
</tbody>
</table>

The RX62N Demo Project Slave Application has the following Cyclic Handlers:

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4_CYC</td>
<td>Renesas TCP/IP Library for periodic processing</td>
</tr>
</tbody>
</table>
3.3.5 Master: Power-on Reset Application Flow

The RX62N Demo Project Master Application flowchart can be seen as follows:

```
Start

PowerON_Reset_PC();
usbc_cpu_McuInitialize();
usbc_cpu_SdramInit();
_INITSCT();
_INIT_IOLIB();
HardwareSetup();
vsta_knl();

End
```
3.3.6 Slave: Power-on Reset Application Flow

The RX62N Demo Project Slave Application flowchart can be seen as follows:

```
Start

PowerON_Reset_PC();
usbc_cpu_McuInitialize();
_INITSCT();
_INIT_IOLIB();
HardwareSetup();
vsta_knl();

End
```
4. RI-600: Master RSK

4.1 Running Master RSK

Open the rx62n_RI600_demo.hws Workspace file as shown below:

Select ‘Yes’ in the following or similar prompt:
Connect to the RX62N RSK with the following settings:

![Initial Settings Diagram]

In the next screen, configure as follows to complete the connection:

![Configuration Properties Diagram]
Ensure that the x62n_RI600_demo_master Project is selected as shown:

Goto Build ➔ Build All as shown:

Click ‘Yes to all’ when prompted with the following window:

Press F5 or select Debug ➔ Go to start program execution.
4.2 Compiler Settings

The compiler settings for Renesas RX Toolchain Version 1.0 are as follows:

- `cpu=rx600`
 - `include=\"$(PROJDIR)\"/Debug,\"$(WORKSPDIR)\"/Source/demo_src/master/hew_files,\"$(WORKSPDIR)\"/Source/common_src_usb/MSC2FW\"include,\"$(WORKSPDIR)\"/Source/common_src_usb/USB2STDFW\"include,\"$(WORKSPDIR)\"/Source/common_src_usb/MSC2FW\"TFAT\"lib,\"$(WORKSPDIR)\"/Source/common_src_usb/MSC2FW\"TFAT\"lib_src,\"C:Program Files\Renesas\RI600-4v100r02\inc600,\"$(WORKSPDIR)\"/Source/tcpip/t4\"lib,\"$(WORKSPDIR)\"/Source/tcpip\"driver,\"$(WORKSPDIR)\"/Source/ddlcd,\"$(WORKSPDIR)\"/Source/gui,\"$(WORKSPDIR)\"/Source/jpeg,\"$(WORKSPDIR)\"/Source/jpeg\"lib,\"$(WORKSPDIR)\"/Source/rx62n\"demo\"header,\"$(WORKSPDIR)\"/Source/mp3\"dec\"lib,\"$(WORKSPDIR)\"/Source/mp3\"dec,\"$(WORKSPDIR)\"/Source/bench,\"$(WORKSPDIR)\"/Source\"adpcm,\"$(WORKSPDIR)\"/Source\"wave,\"$(WORKSPDIR)\"/Source\"DES\"/include,\"$(WORKSPDIR)\"/Source\FreeRTOS\Adaptor,\"$(WORKSPDIR)\"/Source\bench\"aes,\"$(WORKSPDIR)\"/Source\bench\"aes\"lib,\"C:\Program Files\Renesas\RI600-4v100r01\inc600 -define=USB2_FUNCSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1, T4_ETHER_RX600,_TCP_UDP,_USBGC_SDRAM_USE_PP,_WGP16_RX,_MP3_Float,_MP3_F_NO\-_SINGLE_WRA_PPer,_ADAPTOR_RI_600 -output=obj=\"$(CONFIGDIR)\$\(FILELEAF\).obj\" -debug -nostuff -speed -approxdiv -simple_float_conv -nologo -ri600_preinit_mrc

The compiler settings for Renesas RX Toolchain Version 1.2 are as follows:

- `cpu=rx600`
 - `include=\"$(PROJDIR)\"/Debug -include=\"$(WORKSPDIR)\"/Source/demo_src/master/hew_files\" -include=\"$(WORKSPDIR)\"/Source/common_src_usb/MSC2FW\"include -include=\"$(WORKSPDIR)\"/Source/common_src_usb/USB2STDFW\"include -include=\"$(WORKSPDIR)\"/Source/common_src_usb/MSC2FW\"TFAT\"lib -include=\"$(WORKSPDIR)\"/Source/common_src_usb/MSC2FW\"TFAT\"lib_src -include=C:\Program Files\Renesas\RI600-4v100r02\inc600\" -include=\"$(WORKSPDIR)\"/Source/tcpip/t4\"lib -include=\"$(WORKSPDIR)\"/Source/tcpip\"driver -include=\"$(WORKSPDIR)\"/Source/ddlcd -include=\"$(WORKSPDIR)\"/Source\"gui -include=\"$(WORKSPDIR)\"/Source\"jpeg -include=\"$(WORKSPDIR)\"/Source\"jpeg\"lib -include=\"$(WORKSPDIR)\"/Source\"rx62n\"demo\"header -include=\"$(WORKSPDIR)\"/Source\"mp3\"dec\"lib -include=\"$(WORKSPDIR)\"/Source\"mp3\"dec -include=\"$(WORKSPDIR)\"/Source\"bench -include=\"$(WORKSPDIR)\"/Source\"adpcm -include=\"$(WORKSPDIR)\"/Source\"wave -include=\"$(WORKSPDIR)\"/Source\"DES\"/include -include=\"$(WORKSPDIR)\"/Source\FreeRTOS\Adaptor -include=\"$(WORKSPDIR)\"/Source\ri600_files -include=C:\Program Files\Renesas\RI600-4v100r01\inc600\" -define=USB2<FuncSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1, T4_ETHER_RX600,_TCP_UDP,_USBGC_SDRAM_USE_PP,_WGP16_RX,_MP3_Float,_MP3_F_NO\-_SINGLE_WRA_PPer,_ADAPTOR_RI_600 -output=obj=\"$(CONFIGDIR)\$\(FILELEAF\).obj\" -debug -section=L=C -nostuff -speed -approxdiv -simple_float_conv -nologo -ri600_preinit_mrc

4.3 Assembler Settings

The assembler settings for Renesas RX Toolchain Version 1.0 are as follows:

- `cpu=rx600 -include=\"$(PROJDIR)\"/Debug -debug -output=\"$(CONFIGDIR)\$\(FILELEAF\).obj\" -nologo`

The assembler settings for Renesas RX Toolchain Version 1.2 are as follows:

- `cpu=rx600 -include=\"$(PROJDIR)\"/Debug -debug -output=\"$(CONFIGDIR)\$\(FILELEAF\).obj\" -nologo`
4.4 Linker Settings

The linker settings for Renesas RX Toolchain Version 1.0 are as follows:

```c
#define=FIXED_VECT_20=0xffffffff -define=FIXED_VECT_21=0xffffffff -define=FIXED_VECT_22=0xffffffff -define=FIXED_VECT_23=0xffffffff -define=FIXED_VECT_24=0xffffffff -define=FIXED_VECT_25=0xffffffff -define=FIXED_VECT_26=0xffffffff -define=FIXED_VECT_27=0xffffffff -define=FIXED_VECT_28=0xffffffff -define=FIXED_VECT_29=0xffffffff -define=FIXED_VECT_30=0xffffffff -noprelink -rom=D,R,D_1=R_1,D_2=R_2,D_usblib=R_usblib,D_hcd=R_hcd,D_pcd=D_pcd,D_descriptor=R_descriptor,D_hub=D_hub,D_vndr=D_vndr,D_eletest=D_eletest,D_smpl=D_smpl,DDummy=R_Dummy,D_testdata=R_testdata,D_DTCTable=D_dx62n,D_hmsc=R_hmsc -nomessage -list="$(CONFIGDIR)/$(PROJECTNAME).map" -show=symbol,reference,xreference,total_size,vector -nooptimize -start=R_DTCTable/00, & B_DTCTable, &B_DTCTABLE/0200, & B_RX_DESC, & B_TX_DESC, & B_RX_BUFF, & B_TX_BUFF/01000, & SI, & SURI_STACK, & B, & R, & R_2, & R_1, & R_usblib, & R_hcd, & R_pcd, & R_descriptor, & R_hub, & R_vndr, & R_eletest, & R_smpl, & RDummy, & R_testdata, & R_schedule, & R_dx62n, & R_hmsc, & B_2, & B_1, & B_usblib, & B_hcd, & B_pcd, & B_descriptor, & B_hub, & B_vndr, & B_eletest, & B_smpl, & BDummy, & B_testdata, & B_schedule, & B_dx62n, & B_hmsc, & B_RI_RAM, & BRI_HEAP, & BRI_HEAP, & BMP3F, & MP32WAV, & BRINGBUF/03000, & B_DD_RASTERS*, & BJPEG*, & BGUIL_WORK*, & READ_FILE, & MAIN_TASK_RAM/08000000, & INTERRUPT_VECTOR, & P*, & C*, & D*, & W*/0FFF80000, & B_DD_RASTERS*, & BDD_RASTERS*, & BJPEG*, & BGUI_WORK*, & READ_FILE, & JPEG/0FFFF0000, & FIX INTERRUPT VECTOR/0FFFFFFFF80 -nologo -stack -binary="$(WORKSPDIR)/Source/jpeg/title.jpg"(JPEG:4,_jpgeg_title) -library="ri600lit.lib" -library="$(WORKSPDIR)/Source/gui/lib/bwgpRX_LE_16.lib" -library="$(WORKSPDIR)/Source/gui/lib/MGT_LIB_LE.lib" -library="$(WORKSPDIR)/Source/gui/lib/MGT2_LIB_LE.lib" -library="$(WORKSPDIR)/Source/jpeg/RXjpegd.lib" -library="$(WORKSPDIR)/Source/bench/aes/lib/RXaes256little.lib" -library="$(WORKSPDIR)/Source/adpcm/lib/s2_rx_little_v100.lib" -library="$(WORKSPDIR)/Source/DES/lib/des_rx_little_v100.lib" -output="$(CONFIGDIR)/$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)/$(PROJECTNAME).abs" -form=stype -output="$(CONFIGDIR)/$(PROJECTNAME).mot" -exit
```

The linker settings for Renesas RX Toolchain Version 1.2 are as follows:

```c
#define=FIXED_VECT_20=0xffffffff -define=FIXED_VECT_21=0xffffffff -define=FIXED_VECT_22=0xffffffff -define=FIXED_VECT_23=0xffffffff -define=FIXED_VECT_24=0xffffffff -define=FIXED_VECT_25=0xffffffff -define=FIXED_VECT_26=0xffffffff -define=FIXED_VECT_27=0xffffffff -define=FIXED_VECT_28=0xffffffff -define=FIXED_VECT_29=0xffffffff -define=FIXED_VECT_30=0xffffffff -noprelink -rom=D,R,D_1=R_1,D_2=R_2,D_usblib=R_usblib,D_hcd=R_hcd,D_pcd=D_pcd,D_descriptor=R_descriptor,D_hub=D_hub,D_vndr=D_vndr,D_eletest=D_eletest,D_smpl=D_smpl,DDummy=R_Dummy,D_testdata=R_testdata,D_DTCTable=D_dx62n,D_hmsc=R_hmsc -nomessage -list="$(CONFIGDIR)/$(PROJECTNAME).map" -show=symbol,reference,xreference,total_size,vector -nooptimize -start=R_DTCTable/00,B_DTCTable,BDT_TABLE/0200,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF/01000,SI,SURI_STACK,B,R,R_2,R_1,R_usblib,R_hcd,R_pcd,R_descriptor,R_hub,R_vndr,R_eletest,R_smpl,RDummy,R_testdata,R_schedule,R_dx62n,R_hmsc,B_2,B_1,B_usblib,B_hcd,B_pcd,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,BDummy,B_testdata,B_schedule,B_dx62n,B_hmsc,BRI_RAM,BRI_HEAP,MP3WORK_IN,BMP3F,MP32WAV,BRINGBUF/03000,B_DD_RASTERS*,BJPEG*,BGUIL_WORK*,READ_FILE,MAIN_TASK_RAM/08000000,INTERRUPT_VECTOR,*,C*,D*,W*/0FFF80000,JPEG/0FFFF0000,FIX INTERRUPT VECTOR/0FFFFFFFF80 -nologo -stack -binary="$(WORKSPDIR)/Source/jpeg/title.jpg"(JPEG:4,_jpgeg_title) -library="ri600lit.lib" -library="$(WORKSPDIR)/Source/gui/lib/bwgpRX_LE_16.lib" -library="$(WORKSPDIR)/Source/gui/lib/MGT_LIB_LE.lib" -library="$(WORKSPDIR)/Source/gui/lib/MGT2_LIB_LE.lib" -library="$(WORKSPDIR)/Source/jpeg/RXjpegd.lib" -library="$(WORKSPDIR)/Source/bench/aes/lib/RXaes256little.lib" -library="$(WORKSPDIR)/Source/adpcm/lib/s2_rx_little_v100.lib" -library="$(WORKSPDIR)/Source/DES/lib/des_rx_little_v100.lib" -output="$(CONFIGDIR)/$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)/$(PROJECTNAME).abs" -form=stype -output="$(CONFIGDIR)/$(PROJECTNAME).mot" -exit
```
5. RI-600: Slave RSK

5.1 Running Master RSK

Open the rx62n_RI600_demo.hws Workspace file as shown below:

Select ‘Yes’ in the following or similar prompt:
Connect to the RX62N RSK with the following settings:

In the next screen, configure as follows to complete the connection:
Ensure that the x62n_RI600_demo_slave Project is selected as shown:

Goto Build ➔ Build All as shown:

Click ‘Yes to all’ when prompted with the following window:

Press F5 or select Debug ➔ Go to start program execution.
5.2 Compiler Settings

The compiler settings for Renesas RX Toolchain Version 1.0 are as follows:

-cpu=rx600 -
include="$(CONFIGDIR)","$(WORKSPDIR)/Source/demo_src/slave/hew_files","$(WORKSPDIR)/Source/common_src_usb/MSC2FW/include","$(WORKSPDIR)/Source/common_src_usb/USB2STDFW/include","$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib","$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib_src","C:\Program Files\Renesas\RI600-4\v100r02\inc600","$(WORKSPDIR)/Source/tcpip/driver","$(WORKSPDIR)/Source/tcpip/t4_lib","$(WORKSPDIR)/Source/ri62n_demo_header","C:\Program Files\Renesas\RI600-4\v100r01\inc600" -
define=USB2_FUNCSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1,__T4__ETHER__TCP__UDP__RX600__,__ADAPTOR_RI_600__ -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -
default -nostuff -speed -nologo -ri600_preinit_mrc

The compiler settings for Renesas RX Toolchain Version 1.2 are as follows:

-cpu=rx600 -include="$(CONFIGDIR)" -include="$(WORKSPDIR)/Source/demo_src/slave/hew_files" -
include="$(WORKSPDIR)/Source/common_src_usb/MSC2FW/include" -
include="$(WORKSPDIR)/Source/common_src_usb/USB2STDFW/include" -
include="$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib" -
include="$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib_src" -include="C:\Program Files\Renesas\RI600-4\v100r02\inc600" -
define=USB2_FUNCSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1,__T4__ETHER__TCP__UDP__RX600__,__ADAPTOR_RI_600__ -output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -
default -nostuff -speed -nologo -ri600_preinit_mrc

5.3 Assembler Settings

The assembler settings for Renesas RX Toolchain Version 1.0 are as follows:

-cpu=rx600 -include="$(PROJDIR)\Debug" -debug -output="$(CONFIGDIR)\$(FILELEAF).obj" -nologo

The assembler settings for Renesas RX Toolchain Version 1.2 are as follows:

-cpu=rx600 -include="$(PROJDIR)\Debug" -debug -output="$(CONFIGDIR)\$(FILELEAF).obj" -nologo
5.4 Linker Settings

The linker settings for Renesas RX Toolchain Version 1.0 are as follows:

```plaintext
-define=FIXED_VECT_20=0xffffffff -define=FIXED_VECT_21=0xffffffff -define=FIXED_VECT_22=0xffffffff -define=FIXED_VECT_23=0xffffffff -define=FIXED_VECT_24=0xffffffff -define=FIXED_VECT_25=0xffffffff -define=FIXED_VECT_26=0xffffffff -define=FIXED_VECT_27=0xffffffff -define=FIXED_VECT_28=0xffffffff -define=FIXED_VECT_29=0xffffffff -define=FIXED_VECT_30=0xffffffff noprelink -rom=D=R,D_1=R_1,D_2=R_2,D_usblib=R_usblib,D_hcd=R_hcd,D_pcd=R_pcd,D_descriptor=D_descriptor,D_hub=R_hub,D_vndr=D_vndr,D_eletest=D_eletest,D_smpl=D_smpl,D_Dummy=D_Dummy,D_testdata=D_testdata,D_DTCtable=D_DTCtable,D_rx62n=D_rx62n,D_hmsc=D_hmsc nomessage -list="$(CONFIGDIR)$(PROJECTNAME).map" -show=symbol,reference,xreference,total_size,vector -nooptimize -start=R_DTCtable/00,B_DTCtable/0200,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF/010000,SI,SURI_STMTACK,B,R_2,R_1,R_usblib,R_hcd,R_pcd,R_descriptor,R_hub,R_vndr,R_eletest,R_smpl,RDummy,R_testdata,R_schedule,R_rx62n,R_hmsc,B_2,B_1,B_usblib,B_hcd,B_pcd,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,B_Dummy,B_testdata,B_schedule,B_rx62n,B_hmsc,BRI_RAM,BRI_HEAP/03000000,READ_FILE,MAIN_TASK_RAM/08000000,INTERRUPT_VECTOR,P*,C*,D*,W*/0FFFFFF80,FIX_INTERRUPT_VECTOR/0FFFFFF80 -nologo -library="ri600lit.lib" output="$(CONFIGDIR)$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)$(PROJECTNAME).abs" -form=stype -output="$(CONFIGDIR)$(PROJECTNAME).mot" -exit
```

The linker settings for Renesas RX Toolchain Version 1.2 are as follows:

```plaintext
-define=FIXED_VECT_20=0xffffffff -define=FIXED_VECT_21=0xffffffff -define=FIXED_VECT_22=0xffffffff -define=FIXED_VECT_23=0xffffffff -define=FIXED_VECT_24=0xffffffff -define=FIXED_VECT_25=0xffffffff -define=FIXED_VECT_26=0xffffffff -define=FIXED_VECT_27=0xffffffff -define=FIXED_VECT_28=0xffffffff -define=FIXED_VECT_29=0xffffffff -define=FIXED_VECT_30=0xffffffff noprelink -rom=D=R,D_1=R_1,D_2=R_2,D_usblib=R_usblib,D_hcd=R_hcd,D_pcd=D_pcd,D_descriptor=D_descriptor,D_hub=R_hub,D_vndr=D_vndr,D_eletest=D_eletest,D_smpl=D_smpl,D_Dummy=D_Dummy,D_testdata=D_testdata,D_DTCtable=D_DTCtable,D_rx62n=D_rx62n,D_hmsc=D_hmsc nomessage -list="$(CONFIGDIR)$(PROJECTNAME).map" -show=symbol,reference,xreference,total_size,vector -nooptimize -start=R_DTCtable/00,B_DTCtable/0200,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF/010000,SI,SURI_STMTACK,B,R_2,R_1,R_usblib,R_hcd,R_pcd,R_descriptor,R_hub,R_vndr,R_eletest,R_smpl,RDummy,R_testdata,R_schedule,R_rx62n,R_hmsc,B_2,B_1,B_usblib,B_hcd,B_pcd,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,B_Dummy,B_testdata,B_schedule,B_rx62n,B_hmsc,BRI_RAM,BRI_HEAP/03000000,READ_FILE,MAIN_TASK_RAM/08000000,INTERRUPT_VECTOR,P*,C*,D*,W*/0FFFFFF80,FIX_INTERRUPT_VECTOR/0FFFFFF80 -nologo -library="ri600lit.lib" output="$(CONFIGDIR)$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)$(PROJECTNAME).abs" -form=stype -output="$(CONFIGDIR)$(PROJECTNAME).mot" -exit
```
6. FreeRTOS™: Master RSK

6.1 Running Master RSK

Open the rx62n_FreeRTOS_demo.hws Workspace file as shown below:

Select ‘Yes’ in the following or similar prompt:
Connect to the RX62N RSK with the following settings:

![Initial Settings](image1)

In the next screen, configure as follows to complete the connection:

![Configuration Properties](image2)

Note that the Work RAM start address should be: 17b00.
Ensure that the x62n_FreeRTOS_demo_master Project is selected as shown:

![Project Selection](image)

Goto Build ➔ Build All as shown:

![Build Options](image)

Click ‘Yes to all’ when prompted with the following window:

![Confirmation Request](image)

Press F5 or select Debug ➔ Go to start program execution.
6.2 Compiler Settings

The compiler settings for Renesas RX Toolchain Version 1.0 are as follows:

```
-cpu=rx600 -
include="$(WORKSPDIR)/Source/demo_src/master/hew_files","$(WORKSPDIR)/Source/common_src_usb/MSC2FW/include","$(WORKSPDIR)/Source/common_src_usb/USB2STDFW/include","$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib","$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib_src","$(WORKSPDIR)/Source/tcpip/4_lib","$(WORKSPDIR)/Source/tcpip/driver","$(WORKSPDIR)/Source/ddlc","$(WORKSPDIR)/Source/gui","$(WORKSPDIR)/Source/gui/lib","$(WORKSPDIR)/Source/touch","$(WORKSPDIR)/Source/jpeg","$(WORKSPDIR)/Source/jpeg/lib","$(WORKSPDIR)/Source/rx62n_demo_header","$(WORKSPDIR)/Source/mp3_dec/lib","$(WORKSPDIR)/Source/mp3_dec","$(WORKSPDIR)/Source/bench","$(WORKSPDIR)/Source/DES/include","$(WORKSPDIR)/Source/FreeRTOS","$(CONFIGDIR)/$(FILELEAF).obj"
```

The compiler settings for Renesas RX Toolchain Version 1.2 are as follows:

```
-cpu=rx600 -
include="$(WORKSPDIR)/Source/demo_src/master/hew_files" -
include="$(WORKSPDIR)/Source/common_src_usb/MSC2FW/include" -
include="$(WORKSPDIR)/Source/common_src_usb/USB2STDFW/include" -
include="$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib" -
include="$(WORKSPDIR)/Source/common_src_usb/MSC2FW/TFAT/lib_src" -
include="$(WORKSPDIR)/Source/tcpip/4_lib" -
include="$(WORKSPDIR)/Source/tcpip/driver" -
include="$(WORKSPDIR)/Source/ddlc" -
include="$(WORKSPDIR)/Source/gui" -
include="$(WORKSPDIR)/Source/gui/lib" -
include="$(WORKSPDIR)/Source/touch" -
include="$(WORKSPDIR)/Source/jpeg" -
include="$(WORKSPDIR)/Source/jpeg/lib" -
include="$(WORKSPDIR)/Source/rx62n_demo_header" -
include="$(WORKSPDIR)/Source/mp3_dec/lib" -
include="$(WORKSPDIR)/Source/mp3_dec" -
include="$(WORKSPDIR)/Source/bench" -
include="$(WORKSPDIR)/Source/DES/include" -
include="$(WORKSPDIR)/Source/FreeRTOS" -
include="$(WORKSPDIR)/Source/FreeRTOS/Adaptor" -
include="$(WORKSPDIR)/Source/adpcm/lib" -
include="$(WORKSPDIR)/Source/adpcm" -
include="$(WORKSPDIR)/Source/wave" -
define=USB2_FUNCSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1,T4ETHER_RX600=1,TCP_UDP,USBC_SDRAM_USE_PP,WGP16_RX,MP3Float,MP3F_NO_SINGLE_WRAPPER_ADAPTOR_FREE_RTOS_RX62N_MASTER -output=obj="$(CONFIGDIR)/$(FILELEAF).obj" -
ddebug -nostuff -speed -approxdiv -simple_float_conv -nologo
```

6.3 Assembler Settings

The assembler settings for Renesas RX Toolchain Version 1.0 are as follows:

```
-cpu=rx600 -debug -output="$(CONFIGDIR)/$(FILELEAF).obj" -nologo
```

The assembler settings for Renesas RX Toolchain Version 1.2 are as follows:

```
-cpu=rx600 -debug -output="$(CONFIGDIR)/$(FILELEAF).obj" -nologo
```
6.4 Linker Settings

The linker settings for Renesas RX Toolchain Version 1.0 are as follows:

- noprelink -
 rom=D=R,D_1=l=R_1,D_2=l=R_2,D_uslib=l=R_uslib,D_hcd=l=R_hcd,D_pcd=l=R_pcm,D_descriptor=l=R_descriptor,D_hub=l=R_hub,D_vndr=l=R_vndr,D_eletest=l=R_eletest,D_smpl=l=R_smpl,D_Dummy=l=R_Dummy,D_testdata=l=R_testdata,D_DTCTable=l=R_DTCTable,D_rx62n=l=R_rx62n,D_hmsc=l=R_hmsc -nonsense -list=$(CONFIGDIR)$(PROJECTNAME).map
 -show=symbol,reference,xreference,total_size,vector -nooptimize -
 -start=R_DTCTable,B_DTCTable,BDTC_TABLE,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF,B_RX_SCAN,B_R,R,R_2,R_1,R_uslib,R_hcd,R_pcm,R_descriptor,R_hub,R_vndr,R_eletest,R_smpl,R_Dummy,R_testdata,R_schedule,R_rx62n,R_hmsc,B_2,B_1,B_uslib,B_hcd,B_pcm,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,B_Dummy,B_testdata,B_schedule,B_rx62n,B_hmsc,BRI_RAM,BRI_HEAP,MP3WORK_IN,BMP3F,MP32WAV,BRINGBUF/00,BDD_RASTERS*,JPEG*,GUI_WORK*,READ_FILE,MAIN_TASK_RAM/08000000,P*,C*,D*,W*/0FFF80000,JPEG/0FFFF000,JPEG/0FFFF528,FIXEDVECT/0FFFFFFFFD -nologo -stack -total_size -
 -binary=$(WORKSPDIR)/Source/jpeg/title.jpg"(JPEG:4,_jpege_title) -
 -library=$(WORKSPDIR)/Source/gui/lib/libwgpRX_LE_16.lib" -
 -library=$(WORKSPDIR)/Source/gui/lib/GMT_FILE.LE.lib" -
 -library=$(WORKSPDIR)/Source/jpeg/lib/RXjpegd.lib" -library=$(WORKSPDIR)/Source/fft/fftfilt512.lib" -
 -library=$(WORKSPDIR)/Source/DES/lib/DES_rx_075_v100.lib" -
 -library=$(WORKSPDIR)/Source/DES/lib/DES_rx_075_v100.lib" -
 -output=$(CONFIGDIR)$(PROJECTNAME).abs" -end -input=$(CONFIGDIR)$(PROJECTNAME).abs" -
 -form=stype -output="$(CONFIGDIR)$(PROJECTNAME).mot" -exit

The linker settings for Renesas RX Toolchain Version 1.2 are as follows:

- noprelink -
 rom=D=R,D_1=l=R_1,D_2=l=R_2,D_uslib=l=R_uslib,D_hcd=l=R_hcd,D_pcd=l=R_pcm,D_descriptor=l=R_descriptor,D_hub=l=R_hub,D_vndr=l=R_vndr,D_eletest=l=R_eletest,D_smpl=l=R_smpl,D_Dummy=l=R_Dummy,D_testdata=l=R_testdata,D_DTCTable=l=R_DTCTable,D_rx62n=l=R_rx62n,D_hmsc=l=R_hmsc -nonsense -list=$(CONFIGDIR)$(PROJECTNAME).map
 -show=symbol,reference,xreference,total_size,vector -optimize=speed -
 -start=R_DTCTable,B_DTCTable,BDTC_TABLE,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF,B_RX_SCAN,B_R,R,R_2,R_1,R_uslib,R_hcd,R_pcm,R_descriptor,R_hub,R_vndr,R_eletest,R_smpl,R_Dummy,R_testdata,R_schedule,R_rx62n,R_hmsc,B_2,B_1,B_uslib,B_hcd,B_pcm,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,B_Dummy,B_testdata,B_schedule,B_rx62n,B_hmsc,BRI_RAM,BRI_HEAP,MP3WORK_IN,BMP3F,MP32WAV,BRINGBUF/00,BDD_RASTERS*,JPEG*,GUI_WORK*,READ_FILE,MAIN_TASK_RAM/08000000,P*,C*,D*,W*/0FFF80000,JPEG/0FFFF000,JPEG/0FFFF528,FIXEDVECT/0FFFFFFFFD -nologo -stack -total_size -binary="$(WORKSPDIR)/Source/jpeg/title.jpg"(JPEG:4,jpege_title) -
 -library="$(WORKSPDIR)/Source/gui/lib/libwgpRX_LE_16.lib" -
 -library="$(WORKSPDIR)/Source/gui/lib/GMT_FILE.LE.lib" -
 -library="$(WORKSPDIR)/Source/jpeg/lib/RXjpegd.lib" -library="$(WORKSPDIR)/Source/fft/fftfilt512.lib" -
 -library="$(WORKSPDIR)/Source/DES/lib/DES_rx_075_v100.lib" -
 -library="$(WORKSPDIR)/Source/DES/lib/DES_rx_075_v100.lib" -
 -output="$(CONFIGDIR)$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)$(PROJECTNAME).abs" -
 -form=stype -output="$(CONFIGDIR)$(PROJECTNAME).mot" -exit
7. FreeRTOS™: Slave RSK

7.1 Running Master RSK

Open the rx62n_FreeRTOS_demo.hws Workspace file as shown below:

Select ‘Yes’ in the following or similar prompt:
Connect to the RX62N RSK with the following settings:

In the next screen, configure as follows to complete the connection:

Note that the Work RAM start address should be: 17b00.
Ensure that the x62n_FreeRTOS_demo_slave Project is selected as shown:

Goto Build→Build All as shown:

Click ‘Yes to all’ when prompted with the following window:

Press F5 or select Debug→Go to start program execution.
7.2 Compiler Settings

The compiler settings for Renesas RX Toolchain Version 1.0 are as follows:

```bash
-cpu=rx600 -
include="$(WORKSPDIR)/Source/demo_src\slave\hew_files","$(WORKSPDIR)/Source/common_src_usb\MSC2FW\include","$(WORKSPDIR)/Source/common_src_usb\USB2STDFW\include","$(WORKSPDIR)/Source/common_src_usb\MSC2FW\TFAT\lib","$(WORKSPDIR)/Source/common_src_usb\MSC2FW\TFAT\lib_src","$(WORKSPDIR)/Source/tcip\driver","$(WORKSPDIR)/Source/tcip\t4_lib","$(WORKSPDIR)/Source/tx62n_demo_header","$(WORKSPDIR)/Source/FreeRTOS","$(WORKSPDIR)/Source/FreeRTOS\Adaptor" -
define=USB2_FUNCSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1,_T4Ether,_TCP,_UDP,__RX600__,__ADAPTOR_FREE_RTOS__ -undefine=__RX600 -
output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nostuff -speed -nologo
```

The compiler settings for Renesas RX Toolchain Version 1.2 are as follows:

```bash
-cpu=rx600 -
include="$(WORKSPDIR)/Source/demo_src\slave\hew_files" -
include="$(WORKSPDIR)/Source/common_src_usb\MSC2FW\include" -
include="$(WORKSPDIR)/Source/common_src_usb\USB2STDFW\include" -
include="$(WORKSPDIR)/Source/common_src_usb\MSC2FW\TFAT\lib" -
include="$(WORKSPDIR)/Source/common_src_usb\MSC2FW\TFAT\lib_src" -
include="$(WORKSPDIR)/Source/tcip\driver" -include="$(WORKSPDIR)/Source/tcip\t4_lib" -
include="$(WORKSPDIR)/Source/tx62n_demo_header" -include="$(WORKSPDIR)/Source/FreeRTOS" -
include="$(WORKSPDIR)/Source/FreeRTOS\Adaptor" -
include="$(WORKSPDIR)/Build\tx62n_RI600_demo_slave\Debug" -include="$(WORKSPDIR)/Source/ri600_files" -
include="$(WORKSPDIR)/Source/DDLCD" -
define=USB2_FUNCSEL_PP=USBC_HOST_PP,USBC_FW_PP=USBC_FW_OS_PP,USBC_TFAT_USE_PP=1,_T4Ether,_TCP,_UDP,__RX600__,__ADAPTOR_FREE_RTOS__ -undefine=__RX600 -
output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -section=L=C -nostuff -speed -nologo
```

7.3 Assembler Settings

The assembler settings for Renesas RX Toolchain Version 1.0 are as follows:

```bash
-cpu=rx600 -debug -output="$(CONFIGDIR)\$(FILELEAF).obj" -nologo
```

The assembler settings for Renesas RX Toolchain Version 1.2 are as follows:

```bash
-cpu=rx600 -debug -output="$(CONFIGDIR)\$(FILELEAF).obj" -nologo
```
7.4 Linker Settings

The linker settings for Renesas RX Toolchain Version 1.0 are as follows:

```
-notoprelink -
rom=D=R,D_1=R_1,D_2=R_2,D_usblib=R_usblib,D_hcd=R_hcd,D_pcd=R_pcd,D_descriptor=R_descriptor,D_hub=
R_hub,D_vndr=R_vndr,D_eletest=R_eletest,D_smpl=R_smpl,D_Dummy=R_Dummy,D_testdata=R_testdata,D_DTCTable=
R_DTCTable,D_rx62n=R_rx62n,D_hmsc=R_hmsc -nomessage -list="$(CONFIGDIR)/$(PROJECTNAME).map"
-show=symbol,reference,xreference,total_size,vector -nooptimize -
start=R_DTCTable,B_DTCTable/00,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF/01000,S1,SURI_STACK,
B,R,R_1,R_usblib,R_hcd,R_pcd,R_descriptor,R_hub,R_vndr,R_eletest,R_smpl,R_Dummy,R_testdata,R_schedule,
R_rx62n,R_hmsc,B_2,B_1,B_usblib,B_hcd,B_pcd,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,B_Dummy,B_testdata,
B_schedule,B_rx62n,B_hmsc,BRI_RAM,BRI_HEAP/03000,READ_FILE,MAIN_TASK_RAM/08000000,INTERRUPT,
UPT_VECTOR,P*,C*,D*,W*/0FFF8000,FIXEDVECT/0FFFFFFD0 -nologo -
output="$(CONFIGDIR)/$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)/$(PROJECTNAME).abs" -
form=stype -output="$(CONFIGDIR)/$(PROJECTNAME).mot" -exit
```

The linker settings for Renesas RX Toolchain Version 1.2 are as follows:

```
-notoprelink -
rom=D=R,D_1=R_1,D_2=R_2,D_usblib=R_usblib,D_hcd=R_hcd,D_pcd=R_pcd,D_descriptor=R_descriptor,D_hub=
R_hub,D_vndr=R_vndr,D_eletest=R_eletest,D_smpl=R_smpl,D_Dummy=R_Dummy,D_testdata=R_testdata,D_DTCTable=
R_DTCTable,D_rx62n=R_rx62n,D_hmsc=R_hmsc -nomessage -list="$(CONFIGDIR)/$(PROJECTNAME).map"
-show=symbol,reference,xreference,total_size,vector -nooptimize -
start=R_DTCTable,B_DTCTable/00,B_RX_DESC,B_TX_DESC,B_RX_BUFF,B_TX_BUFF/010000,B,R,R_2,R_1,R_usblib,
B,R,R_1,R_usblib,B_hcd,B_pcd,B_descriptor,B_hub,B_vndr,B_eletest,B_smpl,B_Dummy,B_testdata,B_schedule,B_rx62n,
B_hmsc,BRI_RAM,BRI_HEAP/03000,READ_FILE,MAIN_TASK_RAM/08000000,INTERRUPT,
UPT_VECTOR,P*,C*,D*,W*/0FFF8000,FIXEDVECT/0FFFFFFD0 -nologo -
output="$(CONFIGDIR)/$(PROJECTNAME).abs" -end -input="$(CONFIGDIR)/$(PROJECTNAME).abs" -
form=stype -output="$(CONFIGDIR)/$(PROJECTNAME).mot" -exit
```
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Jul.19.11</td>
<td>—</td>
<td>First edition issued</td>
</tr>
<tr>
<td>1.01</td>
<td>Jun. 05. 12</td>
<td>—</td>
<td>Changed the code to support Renesas RX Compiler V1.02</td>
</tr>
<tr>
<td>1.02</td>
<td>Sept. 05.12</td>
<td>1</td>
<td>Include MP3 in table with exception to find local Renesas Representative.</td>
</tr>
<tr>
<td>1.02</td>
<td>Sept. 05.12</td>
<td>3</td>
<td>Updated HEW and CCRX compiler versions</td>
</tr>
<tr>
<td>1.02</td>
<td>Sept. 05.12</td>
<td>11-13</td>
<td>Added Directory structure and libraries to be added</td>
</tr>
<tr>
<td>1.02</td>
<td>Sept. 05.12</td>
<td>26,30</td>
<td>Removed "-patch=rx610"</td>
</tr>
<tr>
<td>1.02</td>
<td>Sept. 05.12</td>
<td>—</td>
<td>Updated General Precaution and Notice</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.
 - The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No licenses, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantation etc.), or may cause serious property damage (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristic, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damage arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your failure to comply with such laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose related to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.